4 research outputs found

    On Real-Time AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing

    Get PDF
    In this paper, a chip that performs real-time image convolutions with programmable kernels of arbitrary shape is presented. The chip is a first experimental prototype of reduced size to validate the implemented circuits and system level techniques. The convolution processing is based on the address–event-representation (AER) technique, which is a spike-based biologically inspired image and video representation technique that favors communication bandwidth for pixels with more information. As a first test prototype, a pixel array of 16x16 has been implemented with programmable kernel size of up to 16x16. The chip has been fabricated in a standard 0.35- m complimentary metal–oxide–semiconductor (CMOS) process. The technique also allows to process larger size images by assembling 2-D arrays of such chips. Pixel operation exploits low-power mixed analog–digital circuit techniques. Because of the low currents involved (down to nanoamperes or even picoamperes), an important amount of pixel area is devoted to mismatch calibration. The rest of the chip uses digital circuit techniques, both synchronous and asynchronous. The fabricated chip has been thoroughly tested, both at the pixel level and at the system level. Specific computer interfaces have been developed for generating AER streams from conventional computers and feeding them as inputs to the convolution chip, and for grabbing AER streams coming out of the convolution chip and storing and analyzing them on computers. Extensive experimental results are provided. At the end of this paper, we provide discussions and results on scaling up the approach for larger pixel arrays and multilayer cortical AER systems.Commission of the European Communities IST-2001-34124 (CAVIAR)Commission of the European Communities 216777 (NABAB)Ministerio de Educación y Ciencia TIC-2000-0406-P4Ministerio de Educación y Ciencia TIC-2003-08164-C03-01Ministerio de Educación y Ciencia TEC2006-11730-C03-01Junta de Andalucía TIC-141

    High-Speed Character Recognition System based on a complex hierarchical AER architecture

    Get PDF
    In this paper we briefly summarize the fundamental properties of spikes processing applied to artificial vision systems. This sensing and processing technology is capable of very high speed throughput, because it does not rely on sensing and processing sequences of frames, and because it allows for complex hierarchically structured cortical-like layers for sophisticated processing. The paper describes briefly cortex-like spiking vision processing principles, and the AER (Address Event Representation) technique used in hardware spiking systems. Afterwards an example application is described, which is a simplification of Fukushima’s Neocognitron. Realistic behavioral simulations based on existing AER hardware characteristics, reveal that the simplified neocognitron, although it processes 52 large kernel convolutions, is capable of performing recognition in less than 10µs.Ministerio de Educación y Ciencia TIC-2003-08164-C03-01Ministerio de Educación y Ciencia TEC-2006-11730-C03-01European Union IST-2001-34124 (CAVIAR)Junta de Andalucía P06-TIC-0141

    Current mode techniques for sub-pico-ampere circuit design

    No full text
    In this paper we explore the low current limit that standard CMOS technologies offer for current mode based VLSI designs. We show and validate a reliable circuit design technique for current mode signal processing down to fempto-amperes. We will take advantage of specific-current extractors and logarithmic current splitters to obtain on-chip sub-pA currents. Then we will use a special on-chip saw-tooth oscillator to monitor and measure currents down to a few fempto-amps. This way, sub-pA currents are characterized without driving them off-chip, nor requiring expensive instrumentation with complicated low leakage setups. A special current mirror is also introduced for reliably replicating such low currents. As an example, a simple log-domain first-order low-pass filter is implemented that uses a 100 fF capacitor and a 3.5 fA bias current to achieve a cut-off frequency of 0.5 Hz and using an area of 12 × 24.35 μm2 in a standard 0.35 μm CMOS process. A technique for characterizing noise at these currents is described and verified. Also, temperature dependence of leakage currents is measured as well.This work was supported by Spanish MCyT projects TIC-1999-0446-C02-02, FIT-070000-2001-0859, TIC-2000-0406-P4-05 and EU project IST-2001-34124.Peer Reviewe

    On real-time AER 2-D convolutions hardware for neuromorphic spike-based cortical processing

    Get PDF
    In this paper, a chip that performs real-time image convolutions with programmable kernels of arbitrary shape is presented. The chip is a first experimental prototype of reduced size to validate the implemented circuits and system level techniques. The convolution processing is based on the address-event-representation (AER) technique, which is a spike-based biologically inspired image and video representation technique that favors communication bandwidth for pixels with more information. As a first test prototype, a pixel array of 16 ×16 has been implemented with programmable kernel size of up to 16 × 16. The chip has been fabricated in a standard 0.35-μm complimentary metal-oxide-semiconductor (CMOS) process. The technique also allows to process larger size images by assembling 2-D arrays of such chips. Pixel operation exploits low-power mixed analog-digital circuit techniques. Because of the low currents involved (down to nanoamperes or even picoamperes), an important amount of pixel area is devoted to mismatch calibration. The rest of the chip uses digital circuit techniques, both synchronous and asynchronous. The fabricated chip has been thoroughly tested, both at the pixel level and at the system level. Specific computer interfaces have been developed for generating AER streams from conventional computers and feeding them as inputs to the convolution chip, and for grabbing AER streams coming out of the convolution chip and storing and analyzing them on computers. Extensive experimental results are provided. At the end of this paper, we provide discussions and results on scaling up the approach for larger pixel arrays and multilayer cortical AER systems. © 2008 IEEE.This work was supported by the European Commission under Grants IST-2001-34124 (CAVIAR) and 216777 (NABAB), the Spanish Ministry of Education and Science under Grants TIC-2000-0406-P4 (VICTOR), TIC-2003-08164-C03-01 (SAMANTA), and TEC2006-11730-C03-01 (SAMANTA2), and the Junta de Andalucia under Grant TIC-1417 (Brain System). The work of R. Serrano-Gotarredona was supported by the Spanish Ministry of Education and Science under the FPU scholarships. The work of J. A. Pérez-Carrasco was supported by a scholarship from Junta de Andalucia.Peer Reviewe
    corecore